Matthew D Webb
Names
first: |
Matthew |
middle: |
D |
last: |
Webb |
Identifer
Contact
Affiliations
-
Carleton University
/ Department of Economics
Research profile
author of:
- Fast and Wild: Bootstrap Inference in Stata Using boottest (repec:aah:create:2018-34)
by James G. MacKinnon & Morten Ørregaard Nielsen & David Roodman & Matthew D. Webb - Wild Bootstrap and Asymptotic Inference with Multiway Clustering (repec:aah:create:2020-06)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Unknown
- Unknown
- Unknown
- Unknown
- Unknown
- Unknown
- Unknown
- Unknown
- Cluster-Robust Inference: A Guide to Empirical Practice (repec:arx:papers:2205.03285)
by James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb - Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust (repec:arx:papers:2205.03288)
by James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb - Testing for the appropriate level of clustering in linear regression models (repec:arx:papers:2301.04522)
by James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb - Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference (repec:arx:papers:2301.04527)
by James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb - Difference-in-Differences with Unpoolable Data (repec:arx:papers:2403.15910)
by Sunny Karim & Matthew D. Webb & Nichole Austin & Erin Strumpf - Using Images as Covariates: Measuring Curb Appeal with Deep Learning (repec:arx:papers:2403.19915)
by Ardyn Nordstrom & Morgan Nordstrom & Matthew D. Webb - Cluster-robust jackknife and bootstrap inference for logistic regression models (repec:arx:papers:2406.00650)
by James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb - Jackknife inference with two-way clustering (repec:arx:papers:2406.08880)
by James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb - Good Controls Gone Bad: Difference-in-Differences with Covariates (repec:arx:papers:2412.14447)
by Sunny Karim & Matthew D. Webb - SUMMCLUST: Stata module to compute cluster level measures of leverage, influence, and a cluster jackknife variance estimator (repec:boc:bocode:s459072)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - LOGITJACK: Stata module to provide cluster robust inference for logit models (RePEc:boc:bocode:s459337)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Jackknife inference for multiway clustering and CS-DiD in Stata: twowayjack and csdidjack (RePEc:boc:cand25:12)
by Matthew Webb - A simple, graphical approach to comparing multiple treatment (repec:boc:csug17:01)
by Brennan S. Thompson & Matthew D. Webb - The multiway cluster wild bootstrap (repec:boc:csug17:06)
by James G. MacKinnon & Matthew D. Webb - Jackknife methods for improved cluster–robust inference (repec:boc:csug23:01)
by Matthew Webb - Difference in differences with unpoolable data (repec:boc:csug23:03)
by Sunny Karim & Matthew Webb & Nicole Austin & Erin Strumpf - Cluster–robust inference: A guide to empirical practice (repec:boc:econ21:6)
by Matthew D. Webb & James MacKinnon & Morten Nielsen - Randomization Inference for Difference-in-Differences with Few Treated Clusters (repec:car:carecp:16-11)
by James G. MacKinnon & Matthew D. Webb - Decision Making with Risky, Rival Outcomes: Theory and Evidence (repec:car:carecp:16-12)
by David B. Johnson & Matthew D. Webb - The Subcluster Wild Bootstrap for Few (Treated) Clusters (repec:car:carecp:16-13)
by James G. MacKinnon & Matthew D. Webb - An Experimental Test of the No Safety Schools Theorem (repec:car:carecp:17-10)
by David B. Johnson & Matthew D. Webb - Finish It and It’s Free: An Evaluation of College Graduation Subsidies (repec:car:carecp:19-08)
by Matthew D. Webb - One Sided Matching: Choice Selection With Rival Uncertain Outcomes (repec:clg:wpaper:2015-11)
by Matthew Webb - One Sided Matching: Choice Selection With Rival Uncertain Outcomes (repec:clg:wpaper:2015-12)
by David B. Johnson & Matthew Webb - Targeting Tax Relief at Youth Employment (repec:cpp:issued:v:42:y:2016:i:4:p:415-430)
by Matthew D. Webb & Arthur Sweetman & Casey Warman - Immigrant Category of Admission of the Parents and Outcomes of the Children: How far does the Apple Fall? (repec:crm:wpaper:1618)
by Casey Warman & Christopher Worswick & Matthew Webb - Finish it and it is free: An evaluation of college graduation subsidies (repec:eee:ecoedu:v:93:y:2023:i:c:s027277572300002x)
by Mikola, Derek & Webb, Matthew D. - Randomization inference for difference-in-differences with few treated clusters (repec:eee:econom:v:218:y:2020:i:2:p:435-450)
by MacKinnon, James G. & Webb, Matthew D. - Cluster-robust inference: A guide to empirical practice (repec:eee:econom:v:232:y:2023:i:2:p:272-299)
by MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D. - Testing for the appropriate level of clustering in linear regression models (repec:eee:econom:v:235:y:2023:i:2:p:2027-2056)
by MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D. - Wild Bootstrap Randomization Inference for Few Treated Clusters (repec:eme:aecozz:s0731-905320190000039003)
by James G. MacKinnon & Matthew D. Webb - Targeting Tax Relief at Youth Employment (repec:iza:izadps:dp10182)
by Webb, Matthew D. & Warman, Casey & Sweetman, Arthur - A simple, graphical approach to comparing multiple treatments (repec:oup:emjrnl:v:22:y:2019:i:2:p:188-205.)
by Brennan S Thompson & Matthew D Webb - How Targeted Is Targeted Tax Relief? Evidence From The Unemployment Insurance Youth Hires Program (repec:qed:wpaper:1298)
by Arthur Sweetman & Matthew D. Webb & Casey Warman - Wild Bootstrap Inference For Wildly Different Cluster Sizes (repec:qed:wpaper:1314)
by James G. MacKinnon & Matthew D. Webb - Reworking Wild Bootstrap Based Inference For Clustered Errors (repec:qed:wpaper:1315)
by Matthew D. Webb - Randomization Inference For Difference-in-differences With Few Treated Clusters (repec:qed:wpaper:1355)
by James G. MacKinnon & Matthew D. Webb - The Wild Bootstrap For Few (treated) Clusters (repec:qed:wpaper:1364)
by James G. MacKinnon & Matthew D. Webb - Bootstrap And Asymptotic Inference With Multiway Clustering (repec:qed:wpaper:1386)
by James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen - Pitfalls When Estimating Treatment Effects Using Clustered Data (repec:qed:wpaper:1387)
by James G. MacKinnon & Matthew D. Webb - Wild Bootstrap Randomization Inference For Few Treated Clusters (repec:qed:wpaper:1404)
by James G. MacKinnon & Matthew D. Webb - Fast And Wild: Bootstrap Inference In Stata Using Boottest (repec:qed:wpaper:1406)
by David Roodman & James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen - Wild Bootstrap and Asymptotic Inference with Multiway Clustering (repec:qed:wpaper:1415)
by James G. MacKinnon & Morten Ø. Nielsen & Matthew D. Webb - When and How to Deal with Clustered Errors in Regression Models (repec:qed:wpaper:1421)
by James G. MacKinnon & Matthew D. Webb - Testing for the appropriate level of clustering in linear regression models (repec:qed:wpaper:1428)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Cluster-Robust Inference: A Guide to Empirical Practice (repec:qed:wpaper:1456)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust (repec:qed:wpaper:1483)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference (repec:qed:wpaper:1485)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Cluster-Robust Jackknife and Bootstrap Inference for Binary Response Models (repec:qed:wpaper:1515)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Jackknife Inference with Two-Way Clustering (repec:qed:wpaper:1516)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - A Simple, Graphical Approach to Comparing Multiple Treatments (repec:rye:wpaper:wp063)
by Brennan S. Thompson & Matthew D. Webb - Immigrant category of admission and the earnings of adults and children: how far does the apple fall? (repec:spr:jopoec:v:32:y:2019:i:1:d:10.1007_s00148-018-0700-5)
by Casey Warman & Matthew D. Webb & Christopher Worswick - Wild Bootstrap and Asymptotic Inference With Multiway Clustering (repec:taf:jnlbes:v:39:y:2021:i:2:p:505-519)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Fast and wild: Bootstrap inference in Stata using boottest (repec:tsj:stataj:v:19:y:2019:i:1:p:4-60)
by David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust (RePEc:tsj:stataj:v:23:y:2023:i:4:p:942-982)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Reworking wild bootstrap‐based inference for clustered errors (repec:wly:canjec:v:56:y:2023:i:3:p:839-858)
by Matthew D. Webb - The wild bootstrap for few (treated) clusters (repec:wly:emjrnl:v:21:y:2018:i:2:p:114-135)
by James G. MacKinnon & Matthew D. Webb - Wild Bootstrap Inference for Wildly Different Cluster Sizes (repec:wly:japmet:v:32:y:2017:i:2:p:233-254)
by James G. MacKinnon & Matthew D. Webb - Fast and reliable jackknife and bootstrap methods for cluster‐robust inference (repec:wly:japmet:v:38:y:2023:i:5:p:671-694)
by James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb - Immigrant Category of Admission and the Earnings of Adults and Children: How far does the Apple Fall? (repec:zbw:glodps:196)
by Warman, Casey & Webb, Matthew D. & Worswick, Christopher - The Many Misspellings of Albuquerque: A Comment on 'Sorting or Steering: The Effects of Housing Discrimination on Neighborhood Choice' (repec:zbw:i4rdps:108)
by Chen, Shi & Gangji, Areez & Karim, Sunny & McCanny, Anthony & Webb, Matthew D. - Comparing Human-Only, AI-Assisted, and AI-Led Teams on Assessing Research Reproducibility in Quantitative Social Science (repec:zbw:i4rdps:195)
by Brodeur, Abel & Valenta, David & Marcoci, Alexandru & Aparicio, Juan P. & Mikola, Derek & Barbarioli, Bruno & Alexander, Rohan & Deer, Lachlan & Stafford, Tom & Vilhuber, Lars & Bensch, Gunther & Gold - A Comment on "Delivering Remote Learning Using a Low-Tech Solution: Evidence from a Randomized Controlled Trial in Bangladesh" (repec:zbw:i4rdps:241)
by Fiala, Lenka & Fitzgerald, Jack & Kujansuu, Essi & Mikola, Derek & Valenta, David & Aparicio, Juan P. & Wiebe, Michael & Webb, Matthew D. & Brodeur, Abel