Nicholas Jon Horton
Names
first: |
Nicholas |
middle: |
Jon |
last: |
Horton |
Identifer
Contact
homepage: |
https://nhorton.people.amherst.edu |
|
phone: |
413-542-5655 |
postal address: |
Department of Mathematics and Statistics
Amherst College
31 Quadrangle Dr
PO Box 5000
Amherst, MA 01002-5000 |
Affiliations
-
Department of Mathematics and Statistics (weight: 95%)
- https://www.amherst.edu/academiclife/departments/mathematics
- location: Amherst, MA
Research profile
author of:
- Relation between neighborhood median housing value and hypertension risk among black women in the United States (RePEc:aph:ajpbhl:10.2105/ajph.2005.074740_0)
by Cozier, Y.C. & Palmer, J.R. & Horton, N.J. & Fredman, L. & Wise, L.A. & Rosenberg, L. - Onset of natural menopause in African American women (RePEc:aph:ajpbhl:2003:93:2:299-306_0)
by Palmer, J.R. & Rosenberg, L. & Wise, L.A. & Horton, N.J. & Adams-Campbell, L.L. - Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables (RePEc:bes:amstat:v:55:y:2001:m:august:p:244-254)
by Horton N. J. & Lipsitz S. R. - A Potential for Bias When Rounding in Multiple Imputation (RePEc:bes:amstat:v:57:y:2003:m:november:p:229-232)
by Horton N.J. & Lipsitz S.R. & Parzen M. - Use of R as a Toolbox for Mathematical Statistics Exploration (RePEc:bes:amstat:v:58:y:2004:m:november:p:343-357)
by Horton, Nicholas J. & Brown, Elizabeth R. & Qian, Linjuan - Multilevel and Longitudinal Modeling Using Stata. Sophia Rabe-Hesketh and Anders Skrondal (RePEc:bes:amstat:v:60:y:2006:m:august:p:293-294)
by Horton, Nicholas J. - Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models (RePEc:bes:amstat:v:61:y:2007:m:february:p:79-90)
by Horton, Nicholas J. & Kleinman, Ken P. - Maximum Likelihood Analysis of Logistic Regression Models with Incomplete Covariate Data and Auxiliary Information (RePEc:bla:biomet:v:57:y:2001:i:1:p:34-42)
by Nicholas J. Horton & Nan M. Laird - Discussion: Making Progress in a Crowded Market (RePEc:bla:istatr:v:84:y:2016:i:2:p:179-181)
by Nicholas Jon Horton - Financial Knowledge among Educated Women: Room for Improvement (RePEc:bla:jconsa:v:48:y:2014:i:2:p:403-417)
by Mahnaz Mahdavi & Nicholas J. Horton - Towards more accessible conceptions of statistical inference (RePEc:bla:jorssa:v:174:y:2011:i:2:p:247-295)
by C. J. Wild & M. Pfannkuch & M. Regan & N. J. Horton - Using auxiliary data for parameter estimation with non‐ignorably missing outcomes (RePEc:bla:jorssc:v:50:y:2001:i:3:p:361-373)
by Joseph G. Ibrahim & Stuart R. Lipsitz & Nick Horton - Maximum likelihood estimation of bivariate logistic models for incomplete responses with indicators of ignorable and non‐ignorable missingness (RePEc:bla:jorssc:v:51:y:2002:i:3:p:281-295)
by Nicholas J. Horton & Garrett M. Fitzmaurice - Fitting Generalized Estimating Equation (GEE) Regression Models in Stata (RePEc:boc:asug01:1.1)
by Nicholas Horton - Analysis of multiple source/multiple informant data in Stata (RePEc:boc:asug05:1)
by Nicholas Horton & Garrett Fitzmaurice - Agony and ecstasy: teaching a computationally intensive introductory statistics course using Stata (RePEc:boc:asug07:10)
by Nicholas Jon Horton - Modelling Inequality with a Single Parameter (RePEc:spr:esichp:978-0-387-72796-7_14)
by J. M. Henle & N. J. Horton & S. J. Jakus - I Hear, I Forget. I Do, I Understand: A Modified Moore-Method Mathematical Statistics Course (RePEc:taf:amstat:v:67:y:2013:i:4:p:219-228)
by Nicholas J. Horton - Challenges and Opportunities for Statistics and Statistical Education: Looking Back, Looking Forward (RePEc:taf:amstat:v:69:y:2015:i:2:p:138-145)
by Nicholas J. Horton - Teaching the Next Generation of Statistics Students to “Think With Data”: Special Issue on Statistics and the Undergraduate Curriculum (RePEc:taf:amstat:v:69:y:2015:i:4:p:259-265)
by Nicholas J. Horton & Johanna S. Hardin - Data Science in Statistics Curricula: Preparing Students to “Think with Data” (RePEc:taf:amstat:v:69:y:2015:i:4:p:343-353)
by J. Hardin & R. Hoerl & Nicholas J. Horton & D. Nolan & B. Baumer & O. Hall-Holt & P. Murrell & R. Peng & P. Roback & D. Temple Lang & M. D. Ward - Wrangling Categorical Data in R (RePEc:taf:amstat:v:72:y:2018:i:1:p:97-104)
by Amelia McNamara & Nicholas J. Horton - Enriching Students’ Conceptual Understanding of Confidence Intervals: An Interactive Trivia-Based Classroom Activity (RePEc:taf:amstat:v:73:y:2019:i:1:p:50-55)
by Xiaofei Wang & Nicholas G. Reich & Nicholas J. Horton - Foundations of Statistics for Data Scientists: With R and Python (RePEc:taf:jnlasa:v:117:y:2022:i:539:p:1603-1604)
by Nicholas J. Horton - Stata tip 95: Estimation of error covariances in a linear model (RePEc:tsj:stataj:v:11:y:2011:i:1:p:145-148)
by Nicholas J. Horton - The impact of different sources of body mass index assessment on smoking onset: An application of multiple-source information models (RePEc:tsj:stataj:v:11:y:2011:i:3:p:386-402)
by Maria Paola Caria & Rino Bellocco & Maria Rosaria Galanti & Nicholas J. Horton - Analysis of partially observed clustered data using generalized estimating equations and multiple imputation (RePEc:tsj:stataj:v:14:y:2014:i:4:p:863-883)
by Kathryn M. Aloisio & Sonja A. Swanson & Nadia Micali & Alison Field & Nicholas J. Horton - Review of Multilevel and Longitudinal Modeling Using Stata, Second Edition, by Sophia Rabe-Hesketh and Anders Skrondal (RePEc:tsj:stataj:v:8:y:2008:i:4:p:579-582)
by Nicholas J. Horton